Delivery Brief

Al Didn’t Break Delivery — It Moved the
Bottleneck to Review & Integration

Page 1 — The finding

As code output accelerates, delivery predictability often gets worse — because the constraint
moves from writing code to review, integration, and release. Teams keep measuring “velocity” in
the first box while the schedule is governed by the slowest box.

Rule of thumb: If PRs opened exceed PRs merged for 2+ weeks, your review queue is silently
turning into schedule drift.

The four metrics that reveal the bottleneck shift

m What it measures Why it matters

Review queue length How many PRs are waiting Queues are where dates go to die
for review

Time to first review Hours/days until a PR gets TTFR increases batch size + risk

(TTFR) a first look

PR aging (P50/P85) How long PRs sit before merge ~ Pércentiles expose tail risk that
drives missed dates

Rework rate PRs reopened / extra review High rework means integration cost
cycles is hidden in “progres

- PR aging distribution (illustrative demo data)

42%

% of PRs

0-1d 2-3d 4-7d 8-14d 15d+

Aging is the smoke. The fire is queueing: review capacity can’t keep up with code output.

motionode.com Page 1

Delivery Brief lllustrative demo data

Page 2 — Why it happens (constraints, not effort)

When work moves faster into the system than it can exit,you create a line. The longer the line, the
longer everything waits — even if everyone is working hard. Al typically speeds up the input;

delivery is governed by the slowest constraint.

Coding —_— Review B cl ——> | Integration |—— Release

Al accelerates the first box; delivery is governed by the slowest box.

Three failure modes that make review the bottleneck

Review starvation
Symptoms: long TTFR; PRs wait days for first review.
Fix: rotate a “review captain”; protect reviewer time.

PR batching
Symptoms: big PRs; high rework; long tail aging.
Fix: PR size limits; split by feature flags; merge smaller slices.

Governance mismatch Symptoms: every change requires heavyweight review.
Fix: tiered policy (low risk auto merge, high risk strict).

Review queue builds when PRs opened > PRs merged (demo data)

100
80
60
40 -
20

Open PRs awaiting review

2 4 6 8 10
Week

If PRs opened consistently exceed PRs merged, queue builds first — and schedule drift shows up later, when it's expensive.

motionode.com Page 2

Delivery Brief lllustrative demo data

Page 3 — Governance changes that restore predictability

The goal isn’t to“go faster”. It’s to reduce queueing and stabilize flow through the constraint.

Three hard mandates that work in practice
¢ Set a PR size ceiling (or enforce slicing). Smaller PRs reduce tail risk and rework.

* Tier review requirements by risk (config/docs/low-blast changes are lightweight; core logic is
strict).

. Create protected review capacity (rotation + focus blocks). Treat review as first-class work, not
“spare time.”

This week’s 7-day intervention plan

This week’s cadence (simple, enforceable):

1) Day 1: instrument TTFR + aging buckets; pick a red threshold (e.g., % of PRs > 4 days).
2) Day 2: introduce PR size guidance; split one large PR as the example.

3) Day 3: start a review rotation (review captain) and block reviewer calendar time.

4) Day 4: define tiered review rules (what can be fast-tracked vs strict).

5) Day 5: run a “queue burn-down” (swarm on oldest PRs first).

6) Day 6: re-measure TTFR/aging; adjust thresholds and policy.

7) Day 7: lock the cadence (weekly review health check + queue trend).

Motionode’s solution

Doing this analysis across code hosts, Cl, and spreadsheets usually takes days (and strong
intuition). Motionode surfaces review bottlenecks automatically — TTFR, aging, rework, and their
predicted impact on ship-date confidence — and lets teams simulate governance changes (PR size
caps, review capacity, tiered policies) to see which move improves predictability with the lowest
disruption.

© Motionode

motionode.com Page 3

